PROJETO FOTOVOLTAICO

SISTEMA FOTOVOLTAICO DE POTÊNCIA NOMINAL IGUAL A 8,0 kW INTITULADO

Prefeitura Municipal de Irineópolis

SITUADO NA CIDADE DE
IRINEÓPOLIS
Rua J. D. Brand
GRUPO ESCOLAR ZÉLIA MILLES

CLIENTE:

PREFEITURA MUNICIPAL DE IRINEÓPOLIS

Anexos:

- diagrama unifilar da instalação;
- esquema planimétrico.

DATA

23/02/2022

TÉCNICO RESPONSÁVEL

OBEN BRASIL / WIND & SUN

DADOS GERAIS DO SISTEMA

Este projeto diz respeito à construção de uma sistema de produção de eletricidade através da conversão fotovoltaica, com uma potência nominal igual a 8,0 kW e potência de pico igual a 8,8 kWp.

CLIENTE		
Cliente:	Prefeitura Municipal de Irineópolis	
Endereço: Rua J. D. Brand IRINEÓPOLIS		
CPF / CNPJ:	83.102.558/0001-05	
Unidade Geração:	UC CELESC: 19864979 – GE Zélia Milles	

LOCAL DE INSTALAÇÃO

DADOS DA LOCALIZAÇÃO		
Localidade: IRINEÓPOLIS Rua J. D. Brand		
Latitude:	026°14'52"S	
Longitude:	050°48'01"W	
Altitude:	753 m	
Fonte dados climáticos:	ATLAS BRAS. 2017	
I A IDAGO.	28 % Asfalto envelhecido, Telhados ou terraços com betume,	

DIMENSIONAMENTO

A quantidade de energia produzida é calculada com base nos dados radiométricos, conforme a fonte ATLAS BRAS. 2017, e o Atlás Solarimétrico do Brasil e utilizando os métodos de cálculo descritos nas normas.

As instalações atenderão às seguintes condições (a serem executadas para cada "gerador solar", entendida como um conjunto de módulos fotovoltaicos com o mesmo ângulo e a mesma orientação): na fase inicial do sistema fotovoltaico, a relação entre a energia ou a potência produzida em corrente alternada e a energia ou a potência produzida em corrente alternada (determinada em função da radiação solar incidente sobre o plano de um dos módulos, da potência nominal do sistema e a temperatura de funcionamento dos módulos) é, pelo menos, maior do que 0,78, no caso de utilização de conversores de potência até 20 kW, e 0,8 no caso de utilização de inversores de maior potência, em relação às condições de medição e métodos de cálculo descritos no Guia EN 60904-2.

Não são admitidos conjuntos de módulos em paralelos não perfeitamente idênticos uns aos outros para exposição e / ou da marca, e / ou o modelo e / ou o número de módulos utilizados; cada módulo será equipado com díodos de by-pass.

DESCRIÇÃO DO SISTEMA

O sistema fotovoltaico é composto de 01 Gerador Solar Fotovoltaicos composto de 16 módulos fotovoltaicos e 04 Microinversores.

A potência de pico é de 8,8 kWp para uma produção de 11.689,29 kWh por ano, distribuídos em uma área de 41,28 m².

Modalidade de conexão à rede de alimentação Baixa Tensão em Trifásico com tensão fornecimento 220 V.

EMISSÕES

O sistema reduz a emissão de poluentes na atmosfera de acordo com seguinte tabela abaixo (valores anuais):

Produção Termo Elétrica Equivalente		
Dióxido de enxofre (SO ₂):	1,42 kg	
Óxidos de Nitrogênio (NO _x):	1,79 kg	
Poeiras:	0,06 kg	
Dióxido de carbono (CO ₂):	1,06 t	

Equivalente de energia geotérmica		
Sulfeto de Hidrogênio (H₂S) (fluido geotérmico): 0,00 kg		
Dióxido de carbono (CO ₂):	0,00 t	
Tonelada equivalente de Petróleo (TEP):	2,28 TOE	

RADIAÇÃO SOLAR

A avaliação do recurso solar disponível foi realizada de acordo com a fonte ATLAS BRAS. 2017 e o Atlas Solarimétrico do Brasil, tendo como referência o local com os dados históricos e de radiação solar nas imediações de IRINEÓPOLIS.

TABELA DE RADIAÇÃO SOLAR NA HORIZONTAL

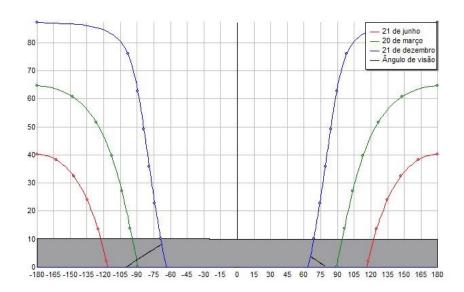
Mês	Total diário [MJ/m²]	Total mensal [MJ/m²]
Janeiro	19	589
Fevereiro	18,04	505,12
Março	16,18	501,58
Abril	12,65	379,5
Maio	10,1	313,1
Junho	8,58	257,4
Julho	9,37	290,47
Agosto	12,99	402,69
Setembro	13,56	406,8
Outubro	15,63	484,53
Novembro	19,16	574,8
Dezembro	19,81	614,11

TABELA DE PRODUÇÃO DE ENERGIA

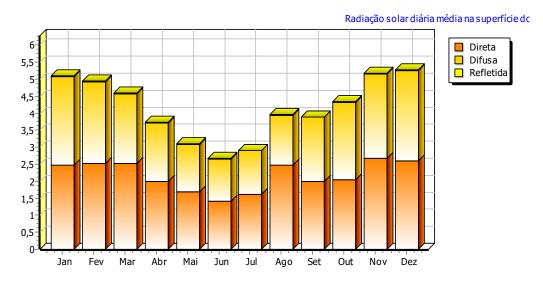
Mês	Total diário [kWh]	Total mensal [kWh]
Janeiro	39,5	1.224,4
Fevereiro	38,3	1.073,5
Março	35,6	1.103,1
Abril	28,9	866,9
Maio	24,0	743,2
Junho	20,6	619,3
Julho	22,5	697,6
Agosto	30,6	949,5
Setembro	30,2	904,5
Outubro	33,5	1.039,3
Novembro	40,0	1.199,8
Dezembro	40,9	1.268,1

EXPOSIÇÕES

O sistema fotovoltaico é composto por 1 gerador distribuído em 1 exposições, conforme tabela abaixo:


Descrição	Tipo de instalação	Orient	Inclin	Sombr
Exposição Noroeste	Ângulo fixo	170°	15°	0,56 %

Exposição Noroeste


Exposição Noroeste será exposto com uma orientação de 170,00° (azimute) em relação ao sul, e terá uma inclinação horizontal de 15,00°.

A produção de energia da exposição Exposição Noroeste é condicionada por alguns fatores que determinam uma redução de radiação solar de sombreamento para a valor de 0,56 %.

GRÁFICO DE SOMBREAMENTO

GRÁFICO DE RADIAÇÃO SOLAR

TABELA DE RADIAÇÃO SOLAR

Mês	Radiação direta [kWh/m²]	Radiação difusa [kWh/m²]	Radiação refletida [kWh/m²]	Total das diárias [kWh/m²]	Total mensal [kWh/m²]
Janeiro	2,469	2,61	0,025	5,104	158,238
Fevereiro	2,524	2,408	0,023	4,955	138,743
Março	2,533	2,045	0,021	4,599	142,567
Abril	2,001	1,717	0,016	3,735	112,036
Maio	1,701	1,384	0,013	3,099	96,056
Junho	1,409	1,248	0,011	2,668	80,043
Julho	1,607	1,289	0,012	2,908	90,154
Agosto	2,473	1,469	0,017	3,959	122,716
Setembro	1,99	1,889	0,017	3,897	116,899
Outubro	2,052	2,261	0,02	4,333	134,324
Novembro	2,684	2,46	0,025	5,169	155,071
Dezembro	2,613	2,649	0,026	5,287	163,896

ESTRUTURAS DE APOIO

Os módulos serão montados em suportes de alumínio anodizado e fixados com componentes de aço inoxidável, com um ângulo de 19°, terão todos a mesma exposição. Os sistemas de fixação da estrutura deverão resistir a rajadas de vento, em conformidade com a Norma Brasileira **NBR 6123**.

GRUPO ESCOLAR ZÉLIA MILLES

O gerador é composto de 16 módulos fotovoltaicos de Silício monocristalino com uma vida útil estimada de mais de 25 anos e degradação da produção devido ao envelhecimento de 0,8 % ao ano.

CARACTERÍSTICAS DO GERADOR FOTOVOLTAICO		
Número de módulos:	16	
Número de inversores:	4	
Potência nominal:	8,0 kW	
Potência de pico:	8,8 kWp	
Performance ratio:	83,3 %	

CARACTERÍSTICAS TÉCNICAS DOS MÓDULOS		
Fabricante:	DAH Solar	
Modelo:	DHM-72X10-550W	
Tecnologia de const.:	Silício monocristalino	
Características elétricas		
Potência máxima:	550 W	
Rendimento:	21,3 %	
Tensão nominal:	42,4 V	
Tensão em aberto:	50 V	
Corrente nominal:	13 A	
Corr. de curto-circuito:	13,7 A	
Dimensões		
Dimensões:	2279 mm x 1134 mm	
Peso:	29 kg	

Os valores de tensão variam conforme a temperatura de funcionamento (mínima, máxima e de regime) e estão dentro dos valores aceitáveis de funcionamento do inversor.

INVERSOR SOLAR

O sistema de conversão é composto por um conjunto de conversores estáticos (inversores).

O conversor CC/CA utiliza um sistema idôneo de transferência de potência a rede de distribuição, em conformidade aos requisitos técnicos e normas de segurança. Os valores de tensão e corrente do dispositivo de entrada são compatíveis com o sistema fotovoltaico, enquanto os valores de saída são compatíveis com os valores da rede ao qual está conectado ao sistema.

As principais características do grupo conversor são:

- Inversor de comutação forçada com PWM (Pulse-width modulation), sem clock e/ou tensão de referência ou de corrente, semelhante a um sistema não idôneo a suportar a tensão e frequência de intervalo normal. Este sistema está em conformidade com as normas da ABNT e com o sistema de rastreamento de potência máxima MPPT
- □ Entrada do gerador CC gerenciado com pólos não ligados ao fio terra.
- □ Conforme as normas gerais de limitação de Emissões EMF e RF: Conformidade IEC 110-1, IEC 110-6, IEC 110-8.
- □ Proteção de desligamento da rede quando o sistema estiver fora da faixa de tensão e frequência da rede e com falha de sobrecorrente, conforme os requisitos da IEC 11-20 e normas da distribuidora de energia elétrica local. Reset automático das proteções de início automático.
- Em conformidade com a ABNT.
- Grau de proteção adequado a localização nas proximidades do campo fotovoltaico (IP65).
- Declaração de conformidade do fabricante de acordo com normas técnica aplicáveis, com referência aos ensaios realizados por institutos certificadores.

- □ Tensão de entrada adequada para o intervalo de tensão de saída do gerador fotovoltaico.
 □ Máxima eficiência >= 90% a 70% da potência nominal.

A unidade de conversão consiste no uso de 4 inversores.

DADOS TÉCNICOS DO INVERSOR			
Fabricante:	DEYE		
Modelo:	SUN- 2000G3 SUN- 2000G3-US220		
Número de rastreadores:	4		
Entrada para rastreador:	1		
Características elétricas			
Potência nominal:	2,0 kW		
Potência máxima:	2,2 kW		
Potência máxima por rastreador:	0,6 kW		
Tensão nominal:	20 V		
Tensão máxima:	60 V		
Tensão mínima por rastreador:	25 V		
Tensão máxima por rastreador:	55 V		
Tensão máxima de saída:	220 Vac		
Corrente nominal:	50 A		
Corrente máxima:	64 A		
Corrente máxima por rastreador:	16 A		
Rendimento:	0,99		

Inversor 1	MPPT 1	MPPT 2	MPPT 3	MPPT 4
Módulos em série:	1	1	1	1
Conjunto de módulos em paralelo:	1	1	1	1
Exposições:	Noroeste	Noroeste	Noroeste	Noroeste
Tensão MPPT (STC):	42,4 V	42,4 V	42,4 V	42,4 V
Número de módulos:	1	1	1	1

Inversor 2	MPPT 1	MPPT 2	MPPT 3	MPPT 4
Módulos em série:	1	1	1	1
Conjunto de módulos em paralelo:	1	1	1	1
Exposições:	Noroeste	Noroeste	Noroeste	Noroeste
Tensão MPPT (STC):	42,4 V	42,4 V	42,4 V	42,4 V
Número de módulos:	1	1	1	1

Inversor 3	MPPT 1	MPPT 2	MPPT 3	MPPT 4
Módulos em série:	1	1	1	1
Conjunto de módulos em paralelo:	1	1	1	1
Exposições:	Noroeste	Noroeste	Noroeste	Noroeste
Tensão MPPT (STC):	42,4 V	42,4 V	42,4 V	42,4 V
Número de módulos:	1	1	1	1

Inversor 4	MPPT 1	MPPT 2	MPPT 3	MPPT 4
Módulos em série:	1	1	1	1
Conjunto de módulos em paralelo:	1	1	1	1
Exposições:	Noroeste	Noroeste	Noroeste	Noroeste
Tensão MPPT (STC):	42,4 V	42,4 V	42,4 V	42,4 V
Número de módulos:	1	1	1	1

DIMENSIONAMENTO

Potência de pico do gerador:

P = P módulos * N° módulos = 550 W * 16 = 8,8 kWp

O cálculo da energia total produzida pelo sistema nas condições normais de STC (radiação de 1000 W/m², temperatura de 25°C), é calculado como:

Exposição	N° módulos	Radiação solar [kWh/m ²]	Energia [kWh]
Exposição Noroeste	16	1.623,51	11.689,2

E = En * (1-Perd) = 11.689,29 kWh

Perd = Perda de potência obtida:

Perda por sombreamento totais:	0,6 %
Perda por aumento de temperatura:	4,9 %
Perdas por descasamento:	5,0 %
Perdas de corrente continua:	1,5 %
Outras perdas:	5,0 %
Perdas na conversão:	1,0 %
Perdas totais:	16,7 %

PERDAS POR SOMBREAMENTO DE OBSTÁCULOS

Mês	Sem obstáculos [kWh]	Produção efetiva [kWh]	Perdas [kWh]
Janeiro	1.224,3	1.224,3	0,0 %
Fevereiro	1.073,5	1.073,5	0,0 %
Março	1.103,0	1.103,0	0,0 %
Abril	866,9	866,9	0,0 %
Maio	743,2	743,2	0,0 %
Junho	619,4	619,4	0,0 %
Julho	697,5	697,5	0,0 %
Agosto	949,6	949,6	0,0 %
Setembro	904,5	904,5	0,0 %
Outubro	1.039,2	1.039,2	0,0 %
Novembro	1.199,9	1.199,9	0,0 %
Dezembro	1.268,1	1.268,1	0,0 %
Ano	11.689,2	11.689,2	0,0 %

CABEAMENTO ELÉTRICO

O cabeamento elétrico será feito por meio de cabos condutores isolados, conforme a descrição abaixo:

Seção do condutor de cobre calculado de acordo com a norma IEC / NBR

Os cabos também estarão de acordo com as normas IEC, com código e cores conforme a norma IEC / NBR. Para não comprometer a segurança dos trabalhadores durante a instalação, verificação ou manutenção, os condutores seguirão a tabela de cores conforme abaixo:

□ Cabos de proteção: Amarelo-Verde (Obrigatório)□ Cabos de neutro: Azul claro (Obrigatório)

□ Cabos de fase: Cinza/Marrom/Preto

□ Cabos de circuito c.c.: Com indicação especifica de (+) para positivo e (-) para negativo.

Como pudemos notar a especificação exposta acima, a seção do condutor do sistema fotovoltaico é superdimensionado, com referimento a corrente e as distâncias limitadas.

Com estas seções, a queda de potencial está contida dentro 2% do valor medido a partir de qualquer módulo para o grupo de conversão.

A fiação: Série fotovoltaica - Q. Inversor

Descrição	Valor
Comprimento total:	49,19 m
Comprimento de dimensionam.:	4,78 m
Circuitos nas proximidades:	1
Temperatura ambiente:	30°
Tabela:	ABNT NBR 5410 (PVC/EPR)
Instalação:	3(B1) - Condutores isolados ou cabos unipolares em eletroduto aparente de seção circular sobre parede
Instalações:	Em feixe: ao ar livre ou sobre superfície; embutidos; em conduto fechado
Tipo de cabo:	Unipolar
Material:	Cobre
Designação:	FG10M1 0.6/1 kV
Tipo de isolação:	EPR
Formação	2x(1x4)
N° condutores positivos/fase:	1
Seção positivo / fase:	4 mm²
N° condutores negativo/neutro:	1
Seção negativo/neutro:	4 mm²
N° condutores PE:	
Seção PE:	
Tensão nominal:	41,5 V
Corrente de funcionamento:	10,8 A
Corrente de curto-circ.to módulos	11,5 A

A fiação: Q. Inversor - Q. Medição

Descrição	Valor
Comprimento total:	43,47 m
Comprimento de dimensionam.:	14,19 m
Circuitos nas proximidades:	1
Temperatura ambiente:	30°

Tabela:	ABNT NBR 5410 (PVC/EPR)
Instalação:	3(B1) - Condutores isolados ou cabos unipolares em eletroduto aparente de seção circular sobre parede
Instalações:	Em feixe: ao ar livre ou sobre superfície; embutidos; em conduto fechado
Tipo de cabo:	Unipolar
Material:	Cobre
Designação:	FG10M1 0.6/1 kV
Tipo de isolação:	EPR
Formação	4x(1x4)+1G6
N° condutores positivos/fase:	1
Seção positivo / fase:	4 mm²
N° condutores negativo/neutro:	1
Seção negativo/neutro:	4 mm²
N° condutores PE:	1
Seção PE:	6 mm²
Tensão nominal:	220 V
Corrente de funcionamento:	4,6 A

A fiação: Q. Medição - Rede

Descrição	Valor
Comprimento total:	0 m
Comprimento de dimensionam.:	0 m
Circuitos nas proximidades:	1
Temperatura ambiente:	30°
Tabela:	ABNT NBR 5410 (PVC/EPR)
Instalação:	4(B2) - Cabo multipolar em eletroduto aparente de seção circular sobre parede
Instalações:	Em feixe: ao ar livre ou sobre superfície; embutidos; em conduto fechado
Tipo de cabo:	Multipolar
Material:	Cobre
Designação:	N1VV-K
Tipo de isolação:	PVC
Formação	5G6
N° condutores positivos/fase:	1
Seção positivo / fase:	6 mm²
N° condutores negativo/neutro:	1
Seção negativo/neutro:	6 mm²
N° condutores PE:	1
Seção PE:	6 mm²
Tensão nominal:	220 V
Corrente de funcionamento:	18,3 A

	Tabela cabos							
Identific.	Descrição	Form.	Des.	Código	Origem	Destin	Copr.	
W00	Cabo série 1 -l.1	2x(1x4)	FG10M1 0.6/1 kV		série 1	l.1	2,79 m	
W01	Cabo série 2 -I.1	2x(1x4)	FG10M1 0.6/1 kV		série 2	l.1	1,58 m	
W02	Cabo série 3 -I.1	2x(1x4)	FG10M1 0.6/1 kV		série 3	l.1	1,84 m	
W03	Cabo série 4 -I.1	2x(1x4)	FG10M1 0.6/1 kV		série 4	1.1	2,68 m	
W04	Cabo série 5 -l.2	2x(1x4)	FG10M1 0.6/1 kV		série 5	1.2	2,74 m	
W05	Cabo série 6 -l.2	2x(1x4)	FG10M1 0.6/1 kV		série 6	1.2	1,54 m	
W06	Cabo série 7 -l.2	2x(1x4)	FG10M1 0.6/1 kV		série 7	1.2	1,59 m	
W07	Cabo série 8 -l.2	2x(1x4)	FG10M1 0.6/1 kV		série 8	1.2	2,43 m	
W08	Cabo série 9 -l.3	2x(1x4)	FG10M1 0.6/1 kV		série 9	1.3	4,78 m	
W09	Cabo série 10 -I.3	2x(1x4)	FG10M1 0.6/1 kV		série 10	1.3	3,93 m	
W10	Cabo série 11 -I.3	2x(1x4)	FG10M1 0.6/1 kV		série 11	1.3	3,15 m	
W11	Cabo série 12 -I.3	2x(1x4)	FG10M1 0.6/1 kV		série 12	1.3	4,4 m	
W12	Cabo série 13 -I.4	2x(1x4)	FG10M1 0.6/1 kV		série 13	1.4	4,51 m	
W13	Cabo série 14 -I.4	2x(1x4)	FG10M1 0.6/1 kV		série 14	1.4	3,67 m	
W14	Cabo série 15 -I.4	2x(1x4)	FG10M1 0.6/1 kV		série 15	1.4	3,33 m	
W15	Cabo série 16 -l.4	2x(1x4)	FG10M1 0.6/1 kV		série 16	1.4	4,24 m	
W16	Cabo inversores I.1 - q.p.	4x(1x4)+1G6	FG10M1 0.6/1 kV		inversores I.1	q.p.	14,19 m	
W17	Cabo inversores I.2 - q.p.	4x(1x4)+1G6	FG10M1 0.6/1 kV		inversores I.2	q.p.	10,57 m	
W18	Cabo inversores I.3 - q.p.	4x(1x4)+1G6	FG10M1 0.6/1 kV		inversores I.3	q.p.	11,84 m	
W19	Cabo inversores I.4 - q.p.	4x(1x4)+1G6	FG10M1 0.6/1 kV		inversores I.4	q.p.	6,86 m	
W20	Q. Medição - Rede	5G6	N1VV-K		Q. Medição	Rede	0 m	

Tabela resumo cabos							
Código	Construtor	Form.	Des.	Descrição	Copr.		
Série fotovoltaica - Q. Inversor		2x(1x4)	FG10M1 0.6/1 kV		98,38 m		
Q. Inversor - Q. Medição		4x(1x4)+1G6	FG10M1 0.6/1 kV		217,34 m		
Q. Medição - Rede		5G6	N1VV-K		0 m		

QUADRO ELÉTRICO

Quadro de campo lado corrente contínua

Será prevista a instalação de um quadro de CC em cada conversor para conexões em paralelo dos módulos, medições e controle dos dados de entrada e saída em cada gerador fotovoltaico.

Quadro de paralelo lado corrente alternada

Será prevista a instalação de um quadro de paralelo em alternada localizado depois dos conversores estáticos, para realização da medição e controle dos dados de saída do inversor. Dentro será adicionado o sistema de interface com a rede e o medidor da sociedade distribuidora CELESC.

ISOLAÇÃO GALVÂNICA E ATERRAMENTO

É previsto o isolamento galvânico entre a corrente continua do sistema fotovoltaico e a rede.

Soluções técnicas diversas podem ser utilizadas e são aceitáveis desde que respeitem as normas vigentes e de boas práticas.

O sistema fotovoltaico será supervisionado por um sistema IT, sem o polo aterrado.

Os conjunto dos módulos serão apresentados pelo número de módulos fotovoltaicos individualmente desligáveis; o sistema possui diodos de bloqueio e proteção contra surtos.

Por razões de segurança, se alguma parte da rede não suportar uma maior intensidade de corrente, esses sistemas devem ser protegidos individualmente. A estrutura de suporte será aterrada.

SISTEMA DE MONITORAMENTO E CONTROLE (SMC)

O sistema de controlo e de monitoramento, permite, por meio de um computador e um software dedicado, de comunicar em cada instante com o sistema de modo a verificar a funcionalidade dos inversores instalados com a possibilidade de visualizar as indicações técnicas (tensão, corrente, a potência, etc.) para cada inversor. Também pode ser lido no histórico de eventos do inversor.

VERIFICAÇÕES

O instalador irá verificar e certificar os pontos seguintes:

- Produção de energia fotovoltaica gerada sob diferentes condições de operação;
- ☐ Continuidade elétrica entre os módulos e as ligações;
- Aterramento;
- □ Isolamento de circuitos elétricos;

O geradorGRUPO ESCOLAR ZÉLIA MILLES atenda às seguintes condições:

Limites de tensão

Tensão mínima Vn a 70,00 °C (34,7 V) maior do que Vmpp mínimo (25,0V)

Tensão máxima Vn a -10,00 °C (46,8 V) inferior a Vmpp máx. (55,0 V)

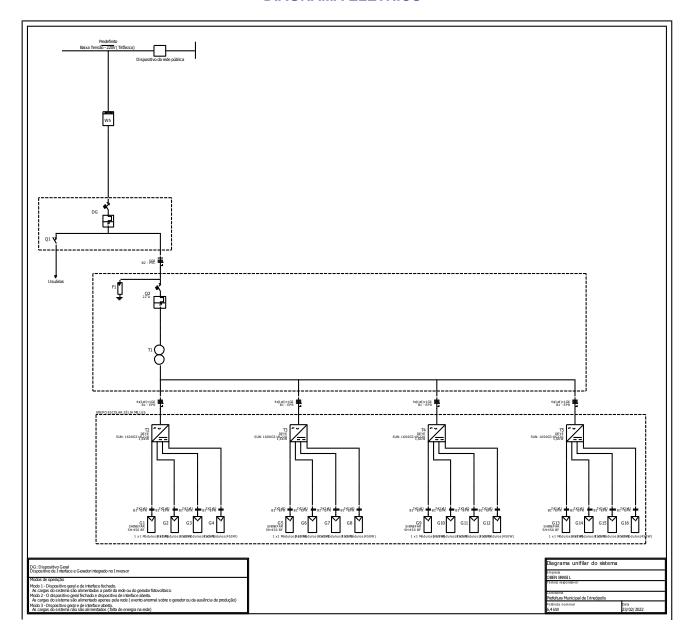
Tensão a vazio Vo a -10,00 °C (55,4 V) inferior a tensão máx. do inversor (60,0 V)

Tensão a vazio Vo a -10,00 °C (55,4 V) inferior a tensão máxima de isolamento (1500,0 V)

Limites de corrente

Corrente máxima de entrada relacionada a lsc (11,5 A) inferior a corrente máxima do inversor (16,0 A)

Limites de potência


Dimensionamento de potência (112,5%) compreendido entre 80,0% e 120,0% [INV. 1]

LAYOUT DO GERADOR

DIAGRAMA ELÉTRICO

CONSIDERAÇÕES FINAIS

Será emitido e divulgado pelo instalador, os seguintes documentos:

- Manual de uso e manutenção, incluindo a programação recomendada de manutenção;
- ☐ Projeto executivo "como construído", acompanhado com folhas de material instalado;
- □ Declaração dos controles efetuados e dos seus resultados;
- □ Declaração de conformidade;
- Certificado emitido por um laboratório acreditado INMETRO e quanto à conformidade com EN 61215 para os módulos de silício cristalino e IEC 61646 para módulos de filme fino;
- □ Certificado emitido por um laboratório acreditado quanto à conformidade do inversor DC / AC com as normas vigentes e, se o dispositivo de interface é usado dentro da própria unidade;
- □ Declarações de garantia relativas aos equipamentos instalados;
- Garantia de todo o sistema e o desempenho.

A empresa de instalação, além de realizar com o que está indicado no projeto, irá realizar todos os trabalhos em conformidade com a normas.